Идеи машинного обучения

Нет оценок

Нет отзывов

Купили 2 человека

Аннотация

Машинное обучение - один из самых быстро развивающихся разделов информатики, с приложениями в самых разных областях. Цель этой книги - познакомить читателя с фундаментальными принципами машинного обучения и характерными для него алгоритмическими парадигмами. Книга содержит обширный свод основополагающих теоретических идей машинного обучения и математические выкладки, благодаря которым эти идеи становятся практическими алгоритмами. Вслед за изложением базовых основ дисциплины рассматривается широкий спектр тем, не нашедших достаточного отражения в предшествующих учебниках: вычислительная сложность обучения, понятия выпуклости и устойчивости, важные алгоритмы, включая стохастический градиентный спуск, нейронные сети и обучение структурированному выводу, а также совсем недавние теоретические концепции, например, PAC-байесовский подход и границы сжатия. .Книга задумывалась как повышенный курс для студентов средних и старших курсов, фундаментальные основы и алгоритмы машинного обучения излагаются в форме, доступной студентам и читателям, не являющимся специалистами в области математической статистики, информатики, математики и технических дисциплин. .Важнейшие алгоритмы машинного обучения .Когда необходимо машинное обучение .Вычислительная сложность обучения .Обучение нейронных сетей .Оценка максимального правдоподобия .Инструмент для извлечения информации из больших наборов данных
Издательство
Страниц436
Год, тираж2019, 200 экз.

Не в наличии

Отзывы

0

Уже читали эту книгу? Поделитесь вашим мнением!

Написать отзыв

Описание и характеристики

Машинное обучение - один из самых быстро развивающихся разделов информатики, с приложениями в самых разных областях. Цель этой книги - познакомить читателя с фундаментальными принципами машинного обучения и характерными для него алгоритмическими парадигмами. Книга содержит обширный свод основополагающих теоретических идей машинного обучения и математические выкладки, благодаря которым эти идеи становятся практическими алгоритмами. Вслед за изложением базовых основ дисциплины рассматривается широкий спектр тем, не нашедших достаточного отражения в предшествующих учебниках: вычислительная сложность обучения, понятия выпуклости и устойчивости, важные алгоритмы, включая стохастический градиентный спуск, нейронные сети и обучение структурированному выводу, а также совсем недавние теоретические концепции, например, PAC-байесовский подход и границы сжатия. .Книга задумывалась как повышенный курс для студентов средних и старших курсов, фундаментальные основы и алгоритмы машинного обучения излагаются в форме, доступной студентам и читателям, не являющимся специалистами в области математической статистики, информатики, математики и технических дисциплин. .Важнейшие алгоритмы машинного обучения .Когда необходимо машинное обучение .Вычислительная сложность обучения .Обучение нейронных сетей .Оценка максимального правдоподобия .Инструмент для извлечения информации из больших наборов данных
Код2704991
Издательство
Кол-во страниц436
Год издания2019
Тираж200 экз.
РазделОбщие вопросы IT
Размеры2.7 см × 17 см × 24.1 см
Вес0.83 кг
В магазине «Буквоед» закончилась книга «Идеи машинного обучения». Когда книга снова поступит в продажу, можно будет сделать заказ из любого города России: от Санкт-Петербурга и Москвы до Казани и Краснодара. Дождитесь, пока появится надпись «Купить», чтобы получить «Идеи машинного обучения» в магазине сети или заказать доставку. Мы и сами любим читать, поэтому делаем всё, чтобы вы могли купить понравившуюся историю по приятной цене. Например, организуем конкурсы и проводим акции. Оставайтесь с нами, чтобы не упустить выгоду!