0+
Нет отзывов
Аннотация
| Издательство | |
|---|---|
| Переплет | Твёрдый переплёт |
| Страниц | 320 |
| Год, тираж | 2019 |
Не в наличии
Отзывы
0Описание и характеристики
Проблема извлечения и последующего накопления знаний в конечном счете сводится к знаниям о модели, которые формализуются путем оценивания ее характеристик. Последнее интерпретируется как обучение модели с использованием данных. Современное представление о машинном обучении предполагает, что его результатом являются «обученные» детерминированные модели, снабженные эмпирическими вероятностными оценками их достоверности.
В настоящей монографии развивается новое направление в машинном обучении — рандомизированное машинное обучение, которое направлено на генерацию ансамблей энтропийно «обученных» рандомизированных моделей. Если иметь в виду, что процедуры машинного обучения применяются к задачам с достаточно высоким уровнем неопределенности (не вполне достоверные данные, неполнота знаний о моделируемом процессе, и др.), то переход к энтропийно-рандомизированной концепции машинного обучения может оказаться полезным и эффективным инструментом решения прикладных задач.
Книга может быть полезной для студентов, аспирантов и научных работников, интересующихся теоретическими аспектами машинного обучения и анализа данных, а также их приложениями в различных практических областях.
В настоящей монографии развивается новое направление в машинном обучении — рандомизированное машинное обучение, которое направлено на генерацию ансамблей энтропийно «обученных» рандомизированных моделей. Если иметь в виду, что процедуры машинного обучения применяются к задачам с достаточно высоким уровнем неопределенности (не вполне достоверные данные, неполнота знаний о моделируемом процессе, и др.), то переход к энтропийно-рандомизированной концепции машинного обучения может оказаться полезным и эффективным инструментом решения прикладных задач.
Книга может быть полезной для студентов, аспирантов и научных работников, интересующихся теоретическими аспектами машинного обучения и анализа данных, а также их приложениями в различных практических областях.
| Код | 2700920 |
|---|---|
| Издательство | |
| Автор | |
| Переплет | Твёрдый переплёт |
| Кол-во страниц | 320 |
| Год издания | 2019 |
| Раздел | Компьютерные самоучители. Справочники |
| Размеры | 1.7 см × 15.3 см × 21.7 см |
| Вес | 0.44 кг |